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a b s t r a c t

Feature combination is a popular method for improving object classification performances. In this paper
we present a simple and effective weighting scheme for feature combination based on the dominant-set
notion of a cluster. Specifically, we use dominant sets clustering to evaluate how accurate a kernel matrix
is expected to be for a SVM classifier. This expected kernel accuracy reflects the discriminative power of
the kernel matrix and thus used in weighting the kernel matrix in feature combination. Our method
is simple, intuitive, memory and computation efficient, and performs comparably to the popular and
sophisticated optimization based methods. We conduct experiments with several datasets of diverse
object types and validate the effectiveness of the proposed method. In fact, in five out of the six datasets
used in our experiments, we obtained the best results until now in our knowledge.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In order to design an effective object classification system,
feature combination is usually adopted in an attempt to combine
the strengths of multiple complementary features and produce
better performance than any individual feature. Feature combina-
tion methods can be categorized into two types according to the
level at which they operate [32]. The first one uses features of all
individual classifiers to form a joint feature vector, which is then
used in later classification. In the case of support vector machine
(SVM) classification, for example, feature combination translates
to combining a set of kernel functions into one final kernel
function. The second type operates at the decision or the score
level, namely, the outputs of all individual classifiers are used
in combination. This approach is attractive as different types of
classifiers, e.g., SVM and k-NN, can be combined together. In this
paper we focus on kernel combination with applications to SVM
classification.

Usually the kernel combination problem refers to the process
to find the best final kernel from the weighted sum of given kernels,
i.e., knðx; yÞ ¼∑n

i ¼ 1wikiðx; yÞ, where the weights wi; i¼ 1;…;n are
what we need. Average combination is the simplest combination
method and widely used as the benchmark for comparison with
other combination methods. In average combination, all participat-
ing kernels are given equal weights, regardless of how they perform
in practice. Intuitively this is not an optimal solution as we tend to
ll rights reserved.
believe that kernels with larger discriminate power should be given
larger weights in order to obtain the best combination performance.
Based on this intuition, a straightforward approach is to estimate
the discriminative power of kernels with cross-validation and then
define the weights of kernels in combination. In this paper, however,
we propose another approach to make use of the intuition from a
difference perspective. Unlike the cross-validation method doing
classification inside training examples, our method is based on the
correlation between the SVM classification mechanism and domi-
nant sets clustering [24,25,30]. In other words, no classification
procedures are involved in our method. For ease of expression, in
this paper we call the estimated discriminative power of a kernel
as the kernel's accuracy. Intuitively, a kernel with a larger accuracy
should be given a larger weight in combination and vice versa.

In our method, the kernel accuracy measured by dominant sets
clustering reflects how accurate a kernel is for SVM classification,
and thus is used to weight the kernel in combination. Unlike MKL
[16] or LPBoost [11] calculating the weights from optimization
with all kernels, our method computes the weights of kernels
separately, i.e., given a kernel, our method outputs its weight in
combination. This implies that in the case that a very large number
of kernels are used in combination, e.g., [1], our method requires
much smaller memory than optimization based methods. While
the cross-validation method is also memory efficient, experiments
in Section 5 indicate that our approach produces better perfor-
mance with smaller computation consumption. Our approach is
intuitive and simple, but is shown to be effective in comparison
with other combination methods on a variety of datasets.

The paper is organized as follows. In Section 2 we briefly review
some of the major research advances in kernel combination, and
show how they inspire our work in this paper. Section 3 introduces
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the dominant set concept of a cluster, which is used to determine
the kernel weights in Section 4. In Section 4 we detail the method to
compute the weights of kernels in combination based on dominant
sets clustering. The experimental results are reported in Section 5
with comparison with other combination methods and the litera-
ture. In Section 6 we discuss the experimental results and future
plans to enhance the method. Finally, Section 7 concludes the paper.
2. Related works

Average combination and product combination are the two
simplest kernel combination methods. They define the final kernel
function as knðx; yÞ ¼ 1

n∑
n
i ¼ 1kiðx; yÞ and knðx; yÞ ¼ ð∏n

i ¼ 1kiðx; yÞÞ1=n
respectively. A more sophisticated idea is multiple kernel learning
(MKL) [16,15,18,35], which seeks to jointly optimize the weightswi

of all kernels in knðx; yÞ ¼∑n
i ¼ 1wikiðx; yÞ and the SVM parameters.

In recent advances in MKL, [40] proposed a non-linear kernel
combination method, i.e., learning different combinations for
different data point clusters, and obtained very encouraging
performance improvement. Other works on non-linear kernel
learning include [6,34]. Another promising direction is to use a very
large number of kernels in combination [1]. To efficiently solve the
MKL problem, [37] showed that p-norm MKL can be trained using
sequential minimal optimization (SMO) algorithm, and thus greatly
improves the training speed for large kernel space and large data
space. In contrast with MKL, [11] presented LPBoost to train the
weights of kernels and SVM parameters in two steps. First the SVMs
are trained separately on each kernel. Then the weights of all kernels
are optimized in a second step. Experiments on the Caltech datasets
validated the effectiveness of this method.

While various works on feature combination have been pub-
lished in the past decades, there are still many important problems
left unsolved in this domain. On one hand, existing combination
methods are often computation and memory expensive. The
popular MKL-like methods determine the weights of kernels based
on the optimization among all participating kernels, and this
usually means enormous computation and memory consumption,
especially when a large dataset or a very large number of kernels
are involved, e.g., the case in Bach [1]. On the other hand, the real
effectiveness of the sophisticated, optimization based methods in
practical applications has been called in question. In [11] Gehler
and Nowozin observed that if all participated features are carefully
designed to be powerful, the sophisticated optimization based
methods, e.g., MKL, do not show evident advantage over the
baseline average combination. Only when both strong and weak
features are combined, the optimization based methods reduce
the effect of weak features and perform better than average
combination. In the supplement to [11] it is also mentioned that
the predictive power of learning mixing coefficients seems to be
overestimated because of missing comparison with the simple (yet
powerful) average combination. Moreover, the supplement
claimed that there seems to be an agreement that MKL almost
never improves performance. In other words, the sophisticated
optimization operations, and also the large amount of computa-
tion and memory consumption involved in MKL, seem not neces-
sary at all and the demonstrated performance of MKL in literature
might also be obtained by the simple average combination.

Compared with average combination, the popular MKL-like
methods obtain tiny, if any, performance gain at the cost of
enormous computation and memory consumption. This observa-
tion prompts us to reassess the average-like simple combination
methods, whose credits are often under-estimated or even ignored
just because of their simpleness. With this consideration in mind,
and observing the correlation between the SVM classification
mechanism and dominant sets clustering, we propose to use
dominant sets clustering to evaluate the discriminative power
and determine the weights of kernels in combination.
3. Dominant sets and their properties

Dominant set is a graph-theoretic concept of a cluster and
dominant sets clustering algorithms have many advantages over
classical, e.g., spectral and graph-based, techniques. In particular,
they do not require a priori knowledge on the number of clusters
and make no assumption on the structure of the affinity matrix,
being able to work with asymmetric and even negative similarity
functions alike [30]. Further, they allow extracting overlapping
clusters and generalize naturally to high-order relations [26]. In
Section 4 we will see that these nice properties make dominant
sets clustering particularly attractive for our purpose of determin-
ing kernel accuracy by clustering. Since their introduction in Pavan
and Pelillo [24], dominant sets have found a variety of successful
applications in such diverse domains as bioinformatics [10],
content-based image retrieval [38], human activity analysis [12]
and object detection [41], etc.

Unlike traditional approaches to data clustering, which insist
on the idea of determining a partition of the input data, dominant
sets attempt to provide a formal answer to the question of what is
a cluster. Although motivated from purely graph-theoretical con-
cepts, being a generalization of the notion of a maximal clique to
edge-weighted graphs, dominant sets turn out to have non-trivial
connections to optimization theory and game theory. In this
section we provide the basic definitions and properties of domi-
nant sets, which are necessary to understand the proposed
method in this paper. The interested reader can find more details
in [24,25,30].

We represent the data to be clustered as an undirected edge-
weighted graph with no self-loops G¼ ðV ; E;wÞ, where V ¼
f1;…;ng is the vertex set, EDV � V is the edge set, and w :

E-Rn

þ is the (positive) weight function. Vertices in G correspond
to data points, edges represent neighborhood relationships, and
edge-weights reflect similarity between pairs of linked vertices. As
customary, we represent the graph G with the corresponding
weighted adjacency (or similarity) matrix, which is the n� n
nonnegative, symmetric matrix A¼ ðaijÞ defined as aij ¼wði; jÞ if
ði; jÞ∈E, and aij ¼ 0 otherwise. Since in G there are no self-loops, we
note that all entries on the main diagonal of A are zero.

Intuitively, a “cluster” can be informally defined as a maximally
coherent set of vertices, i.e., as a subset SDV which satisfies both
an internal criterion (all elements belonging to S should be highly
similar to each other) and an external one (no larger clusters
should contain S as a proper subset). In other words, a cluster
should have high internal homogeneity and there should be high
inhomogeneity between its elements and those outside. This
amounts to saying informally that the weights on the edges within
a cluster should be large, and those on the edges connecting the
cluster nodes to the external ones should be small.

Now, in an attempt to formally capture this notion, we need
some notations and definitions. For a non-empty subset SDV , i∈S,
and j∉S, we define

ϕSði; jÞ ¼ aij−
1
jSj ∑k∈S

aik: ð1Þ

where ∥S∥ denotes the cardinality of S. This quantity measures the
(relative) similarity between nodes i and j, with respect to the
average similarity between node i and its neighbors in S. Note that
ϕSði; jÞ can be either positive or negative. Next, to each vertex i∈S



J. Hou, M. Pelillo / Pattern Recognition 46 (2013) 3129–3139 3131
we assign a weight defined (recursively) as follows:

wSðiÞ ¼
1 if jSj ¼ 1;
∑j∈S\figϕS\figðj; iÞwS\figðjÞ otherwise:

(
ð2Þ

Intuitively, wS(i) gives us a measure of the overall similarity
between vertex i and its neighbors in S, i.e., the vertices of S\fig,
with respect to the overall similarity among the vertices in S\fig.
Therefore, a positive wS(i) indicates that adding i into its neighbors
in S will increase the internal coherence of the set, whereas in the
presence of a negative value we expect the overall coherence to be
decreased. Finally, the total weight of S can be simply defined as

WðSÞ ¼ ∑
i∈S

wSðiÞ: ð3Þ

A non-empty subset of vertices SDV such thatWðTÞ40 for any
non-empty TDS, is said to be a dominant set if:
1.
 wSðiÞ40 for all i∈S.

2.
 wS⋃figðiÞo0 for all i∉S.
It is evident from the definition that a dominant set satisfies the
two basic properties of a cluster, namely internal coherence and
external incoherence. Condition 1 indicates that a dominant set is
internally coherent, whereas condition 2 implies that this coher-
ence will be destroyed by the addition of any vertex from outside.
In other words, a dominant set is a maximally coherent dataset.

Starting from the perspective of a dominant set as a maximally
coherent dataset, we derive a method to extract a dominant set in
the following. Naturally, the internal coherency of a cluster can be
represented by xTAx. The clustering problem is then transformed
into the following linearly constrained quadratic optimization
problem:

max xTAx s:t: x∈Δ ð4Þ
where Δ¼ fx∈Rn : ∑ixi ¼ 1; and xi≥0 for all i¼ 1;…;ng is the stan-
dard simplex of Rn.

In [24,25] Pavan and Pelillo established a connection between
dominant sets and the local solutions of (4). In particular, they
showed that if S is a dominant set then its “weighted characteristic
vector” xS, which is the vector of Δ defined as

xSi ¼
wSðiÞ
WðsÞ if i∈S;

0 otherwise:

8<
: ð5Þ

is a strict local solution of (4). Conversely, under mild conditions, it
turns out that if x is a strict local solution of (4) then its “support”
S¼ fi∈V : xi40g is a dominant set. By virtue of this result, we can
find a dominant set by first localizing a solution of (4) with an
appropriate continuous optimization technique, and then selecting
the support set of that solution. In this sense, we indirectly perform
combinatorial optimization via continuous optimization.

A simple and effective optimization algorithm to extract a
dominant set is given by the so-called replicator dynamics devel-
oped and studied in evolutionary game theory

xðtþ1Þ
i ¼ xðtÞi

ðAxðtÞÞi
xðtÞ′AxðtÞ

ð6Þ

for i¼ 1;…;n. In our implementation, however, we used a more
efficient algorithm proposed recently in Rota Bulò [27], which has
a computational complexity per step that grows linearly in the
number of vertices.

After extracting a dominant set, we remove its vertices from
the graph and repeat the process until all elements are clustered.
Using this “peeling-off” strategy, the number of clusters is auto-
matically determined and the resulted clusters satisfy the constraint of
high intra-cluster and low inter-cluster similarity. In other words, with
dominant sets clustering, the number of clusters is totally deter-
mined by the similarity distribution within the pairwise similarity
matrix, instead of defined by users. This property makes dominant set
a flexible clustering notion, thereby making it especially attractive
for our kernel combination problem, as will be shown in Section 4.
4. Using dominant sets to determine a kernel's accuracy

The SVM is a popular classifier and widely used in object
classification. With a kernel matrix and corresponding training
labels as input, a SVM classifier partitions the training examples of
different classes with as large a margin as possible. From this
mechanism, we see that if the training examples of the same class
are highly similar to each other and those of different classes are
dissimilar, it is likely that the SVM classifier separates training
examples of different classes with a large margin and produces
a high recognition rate. In other words, the chance of a kernel
matrix to produce a high recognition rate is measured by the
extent to which it satisfies the high intra-class and low inter-class
similarity constraint. This measure reflects the discriminative
power of the kernel and will be used in this paper to define the
kernel's accuracy. Intuitively, a kernel with a large accuracy has a
good chance to produce a high recognition rate and therefore
should be assigned a large weight in combination. In the following
we analyze how to define the accuracy of a kernel matrix based on
dominant sets clustering.

By feeding the dominant sets clustering algorithm with a given
kernel matrix (in fact a similarity matrix) we obtain a partition of
the training data, where each part corresponds to a cluster. From
Section 3 we know that in this partition the number of parts is
determined automatically and the parts satisfy the constraint of
high intra-part similarity and low inter-part similarity. Noticing
that the labels of the training data trivially determine another
partition of the training examples where each part corresponds to
a single class, we see here that the resemblance between the
two partitions determines to which extent a kernel matrix satisfies
the constraint of high intra-class and low inter-class similarity, and
this, in turn, determines the chance of a kernel to classify accurately,
i.e., the kernel's accuracy.

Ideally the two partitions coincide and each class corresponds
to a dominant set (see an example illustration in Fig. 1(a)). In this
case the kernel matrix strictly satisfies the constraint of high intra-
class and low inter-class similarity and has a good chance to
produce a high recognition rate. We define the kernel accuracy in
such cases to be 1. Note that this is not to say that the kernel
matrix will produce a 100% recognition rate, but that the potential
of similarity distribution has been fully explored to obtain an
accurate classification in the given framework.

Obviously the ideal case rarely occurs in practice. In fact, the
number of dominant sets is usually larger than the number of
classes. Some dominant sets may contain subsets of only one class
and other dominant sets may contain subsets of multiple classes.
As a result, the dominant-set-based and the training-label-based
partitions might have substantial intersection, as illustrated in
Fig. 1(b). If all dominant sets are of single-class, the constraint of
low inter-class similarity is still satisfied. Although the high intra-
class similarity constraint is not strictly satisfied in this case, we
note that the low inter-class similarity is still easy for a SVM to
classify correctly. Therefore we still define the accuracy of such a
kernel matrix to be 1.

The existence of multi-class dominant sets implies that some
training examples of different classes are very similar to each other
and this presents difficulty for a SVM classifier. It is natural to see
that the percentage of examples in all multi-class dominant sets
should be inversely proportional to the kernel's accuracy. Within



Fig. 1. An illustration of the relationship between the partition by training labels and the one by dominant sets clustering. In the figures the blue lines indicate the partition
by dominant sets clustering, and the partition by training labels are denoted by different colors and symbols. (a) Ideal case. (b) Practical case. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)
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a multi-class dominant set, the shares of different classes also
affect the accuracy. If the share of one class is very large and the
shares of other classes are very small, the multi-class dominant set
looks similar to a single-class one, and its negative effect on the
kernel accuracy is relatively small. On the other hand, if all classes
are distributed uniformly in a dominant set, all classes are equally
involved in the difficult partition and none of them can be ignored.
This is expected to lead to a notable decrease in kernel accuracy.

From the above analysis we see that a kernel's accuracy should be
inversely related to the amount of entropy within dominant sets.
Therefore we define the kernel accuracy in the following way. Suppose
that we have found N dominant sets, and we have C classes. We define
the entropy of each dominant set i (i¼ 1;…;N) as follows:

Hi ¼− ∑
C

j ¼ 1

nij

Ni
log

nij

Ni
ð7Þ

where nij is the number of elements in dominant set iwhich belong to
class j, and Ni is the overall number of elements in dominant set i. Hi

will be 0 if and only if within dominant set i all items are assigned a
single label, and it attains its maximum value (namely, log C) when all
classes get equal share. Hence, by dividing Hi by log C we get a
measure between 0 and 1, where 0 corresponds to the ideal case
where dominant set i gets a unique label, and 1 indicates the opposite
extreme, i.e., uniform distribution of all classes within dominant set i.

Finally, we define an overall accuracy measure of a kernel K in
the following way:

wdsetðKÞ ¼
1
N

∑
N

i ¼ 1
1−

Hi

log C

� �
: ð8Þ

Obviously wdset equals 1 in the ideal case where all dominant sets
are of single-class, and becomes 0 when all dominant sets are
shared equally by all classes. For each kernel, we calculate wdset

and use it to determine the kernel's weight in combination. We
tested different weighting methods, including wk

dset ; k¼ 1;…;6 and
expðwdsetÞ, and finally selected w3

dset as the weight as it produced
the best overall performance.

To sum up, our method to compute the weight of a kernel in
combination involves the following steps:
1.
 Do dominant sets clustering with the kernel matrix as input
and obtain N dominant sets.
2.
 Calculate Hi; i¼ 1;…;N of each dominant set with (7).

3.
 Calculate wdset of the kernel with (8).

4.
 Use w3

dset as the kernel weight in combination.

Our feature combination method is intuitive as it assigns a
meaningful weight to each feature in combination, and simple in
that the weights of features are computed separately. In the case
of a large set of features are combined, the latter property implies
a much smaller memory consumption than optimization based
methods. While our method involves only simple equations, it
does provide a novel approach to estimate the discriminative
power of a kernel and is shown to be effective in experiments.

In SVM classification a multi-class classifier must be extended
from the basic two-class one by means of one-versus-one or one-
versus-all training. Whereas in our feature combination method
the weights of features are determined totally by the resemblance
between the partition by training labels and the one by dominant
sets clustering, and the weights calculation has nothing to do
with the number of classes. This means that the processing steps
of both two-class and multi-class cases are exactly the same.

In our method we compare the partition by training labels with
the one by dominant sets clustering to estimate to which extent
the kernel matrix satisfies the constraint of high intra-class and
low inter-class similarity, and then the kernel accuracy. The key
requirement of the clustering algorithm used here is that the
clusters obtained satisfy the constraint of high intra-cluster and
low inter-class similarity. While any clustering algorithm can be
said to meet this requirement, our method requires the number
of clusters to be determined appropriately, i.e., the degree of
“high” and “low” in the constraint of high intra-cluster and low
inter-cluster similarity to be decided automatically. Otherwise, an
inappropriate selection of the number of clusters may make our
method totally useless. If the number of clusters is too large, the
examples that are very similar to each other may be divided into
different clusters and make most of clusters be of single-class. At
the other extreme, the number of clusters is very small and the
kernel accuracies are determined mostly by the proportion of
different classes in the training dataset. Obviously both cases are
not what we expect. Dominant sets clustering extracts clusters
with high intra-cluster similarity sequentially and determines the
number of clusters automatically, and this is why we choose this
clustering method in our feature combination method.
5. Experimental results

We tested our kernel weighting method in feature combination
with SVM classification experiments on six diverse datasets. In all
experiments the SVM penalty parameters were fixed to be 1000. In
the case of multi-class datasets, the SVMs were trained in the one-
versus-all mode. When distances were used to build kernels, the
transformation used was in the form of kðx; yÞ ¼ expð−d−10 dðx; yÞÞ,
where d is the pairwise distances and d0 is the mean of pairwise
distances. With all the six datasets, the experimental setups and
accuracy measures were selected to be same as in the literature
used for comparison. Unless otherwise stated, the experiments
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were repeated 10 times with different training-testing splits and
the average recognition rates are reported. Since cross-validation
(CV) is usually used to evaluate the powerfulness of a kernel,
in comparisons we also included this weighting method together
with the popular MKL method, where we use the Simple MKL
toolbox as the solver for MKL.

The whole experimental procedures are demonstrated in Fig. 2.
5.1. Recognition rates

1. Event-8 and Scene-15 datasets
The Event-8 dataset [14] consists of images from eight sport

event categories: badminton, bocce, croquet, polo, rock climbing,
rowing, sailing and snowboarding. Each category has 130–250
images. Besides classifying events from static images, the dataset
presents some other challenges for classification, including clut-
tered and diverse backgrounds, and various poses, sizes and views
of foreground objects. See Fig. 3 for sample images and a brief
description. Following the setup in Jia and Fei-Fei [14], we randomly
selected 70 images per class as training and another 60 images as
testing, and report the 8-class overall recognition rate.

The Scene-15 dataset [23,9,17] contains images from 15 cate-
gories with 200–400 images in each category (see Fig. 4 for some
example images). We followed the experimental setup in Lazebnik
et al. [17], i.e., 100 randomly selected images per class as training
Fig. 2. The flowchart of feature weighting in our method. In the denotations, P is
the number of images in the dataset, Q is the number of kernels used in
combination, and Ni is the number of dominant sets extracted from the kernel
matrix Ki.

Fig. 3. Sample images of the Event-8 dataset. Two images per category are displayed wit
badminton, bocce, croquet, polo, rock climbing, rowing, sailing and snowboarding.
and all the others as testing, and report the mean recognition rate
per class.

For both datasets, we used the following features to build the
kernels.

PHOG Shape Descriptor. Oriented (20 bins) and unoriented (40
bins) PHOG descriptors [7,4] were constructed from level 0 to 3.
Different from the implementation in Bosch et al. [4], in this paper
the descriptor of level L was just composed of the descriptors of
its 2L windows, with no addition of those from lower levels.
We denote the two kinds of features as hog180-L and hog360-L
respectively.

Bag of Visual Words. We used SIFT descriptors [19] on 16�16
patches with spacing of eight pixels to build a 500-bin vocabulary.
The descriptors were extracted in gray (128-bin), HSV (384-bin)
and CIE-Lab (384-bin) spaces. The visual word histograms were
built in a pyramid from level 0 to 2. The three kinds of features are
denoted by gvw-L, hvw-L and lvw-L respectively.

Locally Binary Patterns. The basic locally binary patterns (LBP)
[22] were extracted and clustered to create a descriptor for one
image. The descriptor length is 256 and we built the descriptors of
level 0 to 2 (lbp-0 to lbp-2).

Gray Value Histogram. We also used the 64-bin gray value
histograms from level 0 to 3 (hoi-0 to hoi-3).

Gist Descriptor. The gist descriptors [23] were extracted in a
pyramid from level 0 to 1 (gist-0 to gist-1).

Self-similarity Descriptor. Self-similarity descriptors [29] of 30
dimensions (10 orientations and three radial bins) were extracted
and quantized into a vocabulary of 500 bins. The histograms were
built from level 0 to 2 (ssm-0 to ssm-2).

Gabor and RFS filters. We used two texture features: Gabor and
RFS filters [36] to build histograms (500 bins) from level 0 to 2. The
two kinds of features are denoted as gab-L and txn-L respectively.

We used these features to build kernels with χ2 distance and
obtained 35 kernels for Event-8. Note that Scene-15 only contains
gray-level images and we only extracted bag of visual word
features in gray space, therefore getting only 29 kernels. Here
the selection of χ2 distance in building kernels is based on our
previous work in Hou et al. [13], where χ2 based kernel was shown
to outperform some other kernels including linear, Gaussian,
histogram intersection kernel [2], Euclidean and l1 distance based
kernels. Besides, our selection is also supported by Gehler and
Nowozin [11]. The classification results and comparison with
the literature are shown in Table 1. To demonstrate the effects of
individual features on combination performance, we also show
the performance comparison of individual features with combina-
tion in Figs. 5 and 6.

From Table 1 we observe that while average combination
performs better than the best individual feature, our weighted
combination further improves the results considerably for both
datasets. Our recognition rate for Event-8 is 89.8%, which is
substantially better than 73.4% in Jia and Fei-Fei [14] and 84.2%
in Wu and Rehg [39]. For Scene-15, our best result is 87.0%,
outperforming the state-of-the-art result of 86.7% reported in Bo
et al. [3] and other results. In both cases our weighting method
performs better than CV and MKL weighting method, and this
further confirms the effectiveness of our method. These results
h four categories in one row. From left to right and top to bottom, the categories are



Fig. 4. Sample images of the Scene-15 dataset. Two images per category are displayed with three categories in one row. From left to right and top to bottom, the categories
are bedroom, suburb, industrial, kitchen, living room, coast, forest, highway, inside city, mountain, open country, street, tall building, office and store.

Table 1
Event-8 and Scene-15 recognition rates and comparison.

Event-8 Scene-15

Method Accuracy Method Accuracy

Best single 85.070.9 Best single 79.670.7
Average 86.071.5 Average 86.170.5
CV weight 87.671.3 CV weight 86.470.6
MKL 76.971.9 MKL 76.570.6
This paper 89.870.9 This paper 87.070.2
[39] 84.271.0 [3] 86.770.4
[14] 73.4 [39] 84.170.5

[17] 81.470.5
[5] 73.4 71.0
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imply that with relatively simple features and kernel functions,
our combination method produces a significant improvement in
classification performance.

It is evident from Figs. 5 and 6 that when the performance
variance of individual features is small, the advantage of our
weighting method over average combination is a little small. This
is consistent with the trend observed in Gehler and Nowozin [11],
i.e., if all participating kernels are of similar discriminative power,
current learning methods show little advantage over average
combination.

2. Flower-17 and Caltech-101 datasets
Oxford Flower-17 dataset [20] is composed of flower images

of 17 categories with 80 images in each category. See Fig. 7 for
example images. Nilsback and Zisserman [20,21] provided seven
carefully designed kernels for this dataset. Besides these seven
kernels, we added the same 35 kernels as with Event-8 into
combination in experiments. We report the overall recognition
rate and comparison with the literature in Table 2, and the
performance comparison of individual features with combination
in Fig. 8.
On the Flower-17 dataset, our method produced a 90.4%
recognition rate, which, to our knowledge, is the best result
achieved on this dataset to date, better than the results obtained
with MKL in Nilsback and Zisserman [21] and Varma and Ray [35],
and with LP-β method in Gehler and Nowozin [11]. This indicates
that with a relatively small number of kernels, our simple
weighting scheme can be used to produce superior classification
performance.

Comparing Fig. 8 with Figs. 5 and 6, we found that when the
performance of individual features varies significantly (in the case
of Flower-17), our weighting scheme produces a significant per-
formance improvement. In fact, the standard deviation of recogni-
tion rates of individual classifiers is 16.33 for Flower-17, compared
to the 12.03 and 13.37 for Event-8 and Scene-15, respectively. This
means that our method, just like MKL and LP-β, has the property of
suppressing the negative effects of weak features in combination.

With the Caltech-101 dataset [8], we followed the widely
adopted experimental setup. Specifically, for each of the 102 classes,
we randomly selected 5, 10, 15, 20, 25, 30 images for training and up
to 50 images in the remaining for testing. For comparison, we
adopted the same features as in Gehler and Nowozin [11] to build
kernel matrices and used mean recognition rate per class as
accuracy measure. In total 39 kernels from various features were
used in combination. The experimental results and comparisons are
shown in Fig. 9. Since we used exactly the same data and experi-
mental setup as in Gehler and Nowozin [11], we report the results of
MKL, LP-average and LP-β from [11] in comparison. In this experi-
ment our weighting scheme is outperformed by the LP-β algorithm,
but it compares favorably with all the other combination methods,
including LP-average and MKL.

These comparisons indicate that with proper definition, our
simple and intuitive kernel accuracy weighting scheme can be as
powerful as more sophisticated optimization methods. Noticing its
good performance and advantage in computation complexity and
memory consumption, we think this kind of methods should also
be used as a benchmark combination method, just as the average
combination.



Fig. 6. Performance comparison of individual features and combination with Scene-15 dataset. The left 29 bars are of individual features, in the same order as Event-8
excluding hvw-0, hvw-1, hvw-2, lvw-0, lvw-1 and lvw-2, and the rightmost three bars are of average, CV weight and this paper's method respectively.

Fig. 5. Performance comparison of individual features and combination with Event-8 dataset. The left 35 bars are of individual features, in the order of gab-0, gab-1, gab-2,
gist-0, gist-1, gvw-0, gvw-1, gvw-2, hog180-0, hog180-1, hog180-2, hog180-3, hog360-0, hog360-1, hog360-2, hog360-3, hoi-0, hoi-1, hoi-2, hoi-3, hvw-0, hvw-1, hvw-2, lbp-0,
lbp-1, lbp-2, lvw-0, lvw-1, lvw-2, ssm-0, ssm-1, ssm-2, txn-0, txn-1 and txn-2, and the rightmost three bars are of average, CV weight and this paper's method respectively.

Fig. 7. Sample images of the Flower-17 dataset. Two images per category are displayed with four categories per row in the top three rows and five categories in bottom row.
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3. TMA and MRI datasets
Finally, we tested our method on two medical image datasets.

The first one consists of 1272 tissue micro arrays (TMA) images of
renal cell carcinoma. All the images are of size 80�80 pixels
centered at labeled cell nuclei, with 890 images labeled as benign
and 382 as malignant. The details of the dataset can be found in
Schuffler et al. [28] and some example images are shown in Fig. 10.
Here we used the same features as the ones employed with
the Scene-15 dataset to build kernels and the reported results
are expressed in terms of recognition rate with 10-fold cross-
validation.

The second dataset contains brain magnetic resonance images
(MRIs) of 64 schizophrenia patients and 60 healthy controls. For
each subject, 14 regions of interest (ROIs) were manually segmen-
ted from MRI and then cut into a number of slices (Fig. 10). With
normalized gray value histograms from these ROIs and their pdf's
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as features, 13 distance measures were obtained to build 182
kernels in total. See [33] for details of this dataset. The classifica-
tion was conducted with the leave-one-out mode and the results
are reported as overall recognition rate in Table 3.

With both datasets, our combination method shows its super-
iority over best single feature and average methods. On TMA
dataset, [28] built kernels based on the segmentation of nucleus
from surrounding tissue and obtained a best recognition rate of
83%. While in our experiments we applied the combination to the
original unsegmented images and achieved 87.1%. On MRI dataset,
our method also outperformed the dissimilarity matrices combi-
nation in Ulas et al. [33], where the reciprocal of the average
dissimilarity value was used as the weight.
5.2. Computation efficiency

Besides classification accuracy, the computation cost is another
important measure used to evaluate feature combination methods,
especially when a large number of features are involved. Since in
experiments the difference of various feature combination meth-
ods lies only in the kernel weighting step, we report the running
time in the kernel weighting steps of different methods with Caltech-
101 in Table 4 andwith other datasets in Table 5. All experiments were
run on a computer equipped with 2 AMD Athlon 3 GHz CPUs and
8 GB RAM.

From Tables 4 and 5 we observe that in computing the weights
of kernels, our method is much faster than CV and MKL. In our
method, the majority of computation is devoted to the dominant
sets clustering in each participating kernel matrix. With the
traditional game dynamics, e.g., replicator dynamics, this compu-
tation may be quite time consuming as these game dynamics are
usually designed for sceneries with a small number of players and
computationally inefficient. However, in our implementation we
Table 2
Flower-17 recognition rates and comparison.

Method Accuracy

Best single 76.872.0
Average 85.372.1
CV weight 87.571.9
MKL 84.671.5
This paper 90.471.1
[21] 88.370.3
[11] 85.573.0
[35] 82.670.3

Fig. 8. Performance comparison of individual features and combination with Flower-17
the middle 35 are in the same order as Event-8, and the rightmost three are of average
use the infection and immunization dynamics [27] and are able to
finish the clustering efficiently. With CV based weighting method,
classification in the cross-validation mode must be conducted to
evaluate the discriminative power of kernels. This means that the
computation load is determined by the classifier adopted, kernel
matrix size and the number of folds in cross-validation, etc. In the
case that a large kernel matrix is involved, the cross-validation
classification process may be rather computationally expensive. As
to MKL, the joint optimization of kernel weights and SVM classifier
parameters is always time consuming, especially for large kernels,
as shown by the case of Caltech-101.
6. Discussion

In all the six sets of experiments of Section 5, our method
consistently performed better than the best single classifiers. This
confirms that our method is effective in exploring the potential of
the combination of multiple complementary features to produce
better performance. While average combination also produces
better results than the best single classifier, our method evaluates
the powerfulness of participating features and assigns different
weights to different kernels, and thus outperforms average com-
bination. In comparison with the other two trained weighting
Fig. 9. Caltech-101 recognition rates and comparison.

dataset. The leftmost seven bars are of the seven kernel matrices from [20,21], and
, CV weight and this paper's method respectively.



Fig. 10. Sample images of the TMA (left) and Brain MRI (right) dataset. In TMA dataset, the top two rows are of malignant and the bottom two rows are of benign. In Brain
MRI dataset is 35 slices of one ROI.

Table 3
TMA and brain MRI datasets recognition rates and comparison.

TMA Brain MRI

Method Accuracy Method Accuracy

Best single 82.170.3 Best single 70.1
Average 85.470.7 Average 76.6
CV 86.570.3 CV 75.0
MKL 69.970.0 MKL 63.7
This paper 87.170.4 This paper 79.8
[28] 83.0 [33] 79.0

Table 4
The running time comparison of different combination methods on Caltech-101
with varying number of training examples.

Method 5 10 15 20 25 30

CV 105.0 419.4 883.3 1460.4 722.6 3259.5
MKL 1848.8 7421.9 8353.4 11,022.3 21,650.8 187,800.5
This paper 13.9 61.9 163.7 298.4 606.9 917.0

Table 5
The running time comparison of different combination methods on five other
datasets.

Method Event-8 Scene-15 Flower-17 TMA MRI

CV 22.3 107.9 71.7 1356.3 757.4
MKL 172.3 1007.7 1377.8 1398.0 166,328.3
This paper 16.5 70.1 34.1 386.0 615.4
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methods, namely CV and MKL, our method produces better
performance with much smaller computation consumption. The
reason that our method performs better than the CV method lies
probably in the mechanism of cross-validation, namely one part of
the data as training and the other one as testing. This kind of
powerfulness evaluation method seems always not able to utilize
the training kernel matrix as a whole, and this probably harms
the estimation precision of kernel accuracy. As to MKL, it rarely
outperforms average combination, and performs much worse than
even the best single in some cases. This behavior may be due to
the sophisticated and time-consuming optimization which causes
some kind of over-fit in the training model. To sum up, in
experiments our method outperformed the best single classifier,
average combination, CV weighting, MKL and the literature by
several or more percent in recognition rate in most of the cases.
Considering that the datasets used in our experiments are mostly
well-known and widely investigated, we think this improvement
is impressive enough.

While our proposed method has been demonstrated to be
effective in experiments on six datasets, it also leaves some space
for further improvement. The key idea of our method is to
compare the partitions by training labels and by clustering within
a kernel matrix to evaluate the kernel's accuracy. In order for the
method to be effective, the partition by clustering must satisfy the
constraint of high intra-part and low inter-part similarity. In this
paper we select dominant sets clustering to partition the kernel
matrix due to its ability to determine the number of clusters
automatically and produce the clusters we need. Although the
superior performance of dominant sets clustering has been vali-
dated in our experiments, we also note some limitations in
the clustering procedures. First, current dominant sets clustering
algorithms adopt a “peeling-off” strategy and different clusters are
actually extracted from different similarity matrices. This results in
the problem that the degrees of high intra-cluster similarity of
these clusters may be different. In fact, we observed that those
clusters extracted later from smaller similarity matrices tend to
have a relatively low intra-cluster similarity compared with those
from larger similarity matrices. This behavior is obviously not
what we expect and will influence the performance of our
method. In the next step we will work on new dominant sets
clustering strategies, possibly based on the soft clustering method
proposed in Torsello et al. [31]. Second, in our experiments, we
found that dominant sets clustering tends to generate more
clusters than expected. In other words, this clustering method
sets a somewhat too strict requirement of the high intra-cluster
similarity. While this property may be good for other applications,
it departs a little from our expectation as required by our method.
Therefore we plan to explore the possibility to relax the intra-
cluster similarity requirement in dominant sets clustering. Besides
the dominant sets clustering method, the kernel accuracy defini-
tion from the comparison criterion of two partitions also affects
the combination performance. In this paper we use the concept of
entropy within each dominant set to evaluate the discriminative
power of kernels. It is possible to design a more effective kernel
accuracy measure based on the analysis of SVM classification and
kernel combination mechanism.
7. Conclusion

In this paper we have proposed a simple yet effective kernel
weighting method for feature combination in object classification
based on dominant sets clustering. Starting from the intuition
that better-performing kernels should be given larger weights
in combination, we analyzed the correlation between the SVM
classification mechanism and dominant sets clustering. As a result,
we proposed a novel method to evaluate the discriminative power
of kernels. Specifically, we partition the training examples by
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dominant sets clustering and by their training labels. The resem-
blance of these two partitions is found to reflect the possibility of
obtaining a high recognition rate with this kernel, and thus used to
determine the weight of the kernel in combination. We tested the
proposed method with extensive experiments on several datasets
of diverse object types and reported systematic improvement over
benchmark combination methods. While our method is simple, it
performs comparably to more sophisticated, state-of-the-art methods
with much smaller memory and computation consumption.
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